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We solve the problem of the radiation of shearing waves by a thin cylindrical rod rigid- 
ly sealed into an elastic half space that is perpendicular to a free surface, in contrast 
to the steady formulation, on the basis of which the investigation of this kind of problem 
is usually carried out [I], we examine here the initial boundary-value problem which makes 
it possible to determine the extent to which nonsteadiness makes a contribution. Moreover, 
analysis of the nonsteady solutions is useful in regard to a number of questions related 
to engineering practice, including the problems of mining and construction, such as, for 
example, in evaluating soil and ground foundations for purposes of pile-driving operations, 
for evaluating the operation of powerful vibration generators that interact with the soil 
by means of anchor couplings. 

i. Formulation of the Problem. An elastic rod of length ~ and unit radius (R 0 = i, 
~ i) is sealed into an elastic half space {i < r < ~, z > 0} so that its axis coincides 

~Jith the z axis (Fig. i). To the base of the rod {z = 0, r ~ i} as the zero instant of 
time the normal harmonic load Q(t) = H0(t) sinmt [H0(t), i.e., the Heaviside function] is 
applied with the frequency m ~ ~/c (c is the velocity of the longitudinal wave in the rod). 
The embedded face {z = ~, r ~ i} is free of stresses; the length of the wave traveling through 
the rod is given by % >> 1 (~ ~ 2~c/w). Under these assumptions, for purposes of describing 
the motion of the rod, a one-dimensional wave model with displacement V(t, z) is acceptable. 

The problem of the oscillations of a rod sealed into an elastic half space reduces 
to the combined solution of a differential equation for the elastic rod, namely: 

Vtt  - -  Vzz + F(z,  t) = 0 ( 1 . 1 )  

and the equations for the dynamics of an elastic medium A 

v++; = a+v+z+ b~ v / r )  + (a" - -  b+)(U,z+ u:/r), 

u t t =  a2(urr+ u / r  - -  u/r  2) + b2uzz+ (a 2 - -  b2)vr: 
(1.2.1) 

Here v(r, z, t) and u(r, z, t) are the axial and radial displacements of points in the medium; 
a and b are the velocities of the longitudinal and transverse waves; F(z, t) represents 
the reaction of the medium to the displacement of the rod. For the measurement units we 
have taken the radius R0, the rod density P0, and its Young's modulus E 0 (here the unit 
of velocity will be the speed of sound in the rod, while the unit of time will be the time 
within which the sound wave in the rod covers a distance equal to its radius). 
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The solution of a number of dynamic problems with respect to the action of normal loads 
at the boundary of the half space [2, 3] shows that the strain amplitudes and their partial 
derivatives in the vertical direction significantly exceed the corresponding quantities 
in the radial direction. Assuming certain hypotheses with respect to the nature of these 
strains, this makes it possible to make the transition from the exact theory of elasticity 
for A to a physically adequate and mathematically simple model of a deformed medium with 
a single displacement B 

v t t =  a~vz~+ b~(vrr+ v/ r ) ,  (i. 2 . 2 )  

w h i c h  i s  u s e d  i n  t h e  d y n a m i c  p r o b l e m s  o f  u n i d i r e c t i o n a l  c o m p o s i t e s  [ 4 - 6 ] .  I f  we make an 
additional assumption to the effect that the shearing deformation of the soil is predominant, 
we come to the purely shear model of the medium C [7] 

vtt= be(v,r + v/r). (1 .2 .3 )  

We have also examined the plane variants of the above-enumerated models, and these are de- 
noted A', B', and C' In this case, we can derive an analytical solution for C', by means 
of which it is easy to analyze the influence of various parameters of the problem on the 
nature of the wave process. The qualitative proximity of the numerical solution for the 
plane and axisymmetric problems makes it possible to extend the derived results to the general 
case. 

Let us assume that the surface of the half space is free of stresses, and that there 
exists a rigid contact between the rod and the medium. The reaction of the medium will 
then be determined by the shearing stress at the side surface of the rod 

F(z, t)=--2T~zlr=1, (1.3) 

Trz = pb2(vr + u z) in the model of A, ~rz = pb2vr in B and C; O is the relative density 
of the medium. The boundary conditions at the surface of the half space 

OV/Oz = Q(t) (z = O, r < 1); ( 1 . 4 )  

at = ~r~ = 0 (z = O, r > l ) .  ( 1 . 5 )  

In the B and C models Eq. (1.5) assumes the form of 8v/Sz = 0. The following condition 
of continuous displacement is imposed at the side surface of the rod: 

V =  v, u = 0 (r = t). ( 1 . 6 )  

The lower faces free of stresses 

ov/oz = o (z = z). ( 1 . 7 )  

To complete the formulation of the problem we have only to impose the conditions of radia- 

tion at infinity 

u=v=O (V~+ z2 > at) (1.8) 

and to specify the initial conditions (without loss of generality, we will assume these 
to be zero) 

UlKo = vh<o = /1~<o = O. 

Thus, in the region {r > 0, z > 0} we have to find the solution of Eqs. 
boundary conditions (1.3)-(1.8) and initial conditions (1.9). 

2. The Analytical Solution. Initially we formulate the basic conclusions of the dis- 
persion analysis for the approximate models. The set ofeigenfrequencies (they are all 
complex) is identified as to model B, B', C, C' only in the region of the first several 
values. As the frequency number increases, its real part tends toward the corresponding 
eigenfrequency ~k/s for the oscillations of the free rod (for example, with k = 4 the dif- 
ference is less than 1%). The imaginary part, characterizing the attenuation of the wave, 
tends to the quantity--y~, where T = 0b. Thus, on excitation of the system at fre- 
quencies close to ~k/s resonances may arise. The appearance of the principal differences 
between the approximate models should be anticipated in the longwave region. 

(1.9) 

(i.i)-(1.2) with 
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For the purely shearing plane model C' 
of Q(t) = H0(t) an analytical solution has been found in [8], namely: 

in the case of a stepped load given in the form 

VH (t, z) = ~ exp ( - -  ?t) {Io (? ] / t 2  - -  (z 4. 2 ~-~)-o) Ho (t - -  (z 4- 2 In)) -t- 
~ 0  

+ 4 (v V t~ - (2t (,~ + 1) - ~)~) So ( t -  (2z (n + ~) - z))}, 

( 2 . 1 )  

I0 is the modified Bessel function. 
from (2.1) by means of the Duhamel integral 

V (t, z) = J" sin (~o (t - r)) P ~  (~, z) d~ = 
0 

n=0 [zln 

4. S sin (co (t - -  "~)) e x p ( - -  "~t)Io(" ~ ~ ) d ' ~ ,  
z2f~ 

zl~ = z + 2ln, z..~ = 21(n + t ) - - z .  

The solution for the case of sinusoidal load is found 

( 2 . 2 )  

For t >> z, we can demonstrate the validity of the following asymptotic formula 

z ,  

0 ( 
exp ( - -  7t) l 0 (? ~ )  ?~ .~ co~_ exp ( - -  Vz,) cos co (t - -  z , )  + ( 2 . 3 )  

, o) ' + ~ V~+~o~ 
- -  exp ( - -  ?z , )  cos ( o  (t - -  z , ) ) ] .  

Whenwe substitute (2.3) into (2.2) and if we limit ourselves to the first term of the sum, 
which is the same as taking the direct and first reflected waves into consideration, we 
find the as3~nptotic solution of the problem (1.1)-(1.9) with the model C', valid for large 
t, and as will be demonstrated later on, this solution is entirely acceptable for purposes 
of describing the results in practical cases: 

v(t ,  z ) -  ~ { ( e x p ( - v t ) Z o ( V  t -V'F:~-~)_  

- -  exp ( - -  ~/z) cos (co (t - -  z))] H o (t - -  z) 4- [exp  ( - -  ? t ) I  o (y  ~ - -  ( 2 / - -  ~)~) - -  

- -  exp ( - -  ? (21 - -  z)) cos ((o (t + z - -  2/))] H o (t + z - -  2/)}. 
(2.4) 

The displacement in the direct wave, propagated through the rod, is defined by the 
first two terms in (2.4). The contribution due to nonsteadiness exp(--yt)I0(Y4~ 2 - z 2~x 
H0(t - z) represents a function which instantaneously achieves its maximum value and then 
gradually diminishes exponentially over time (curve 2 in Fig. 2, % = 2~/~ = 15, b = 0.i, 
a = 0, p = 0.3, ~ = 60, hz= i). The second term is the perturbation at a carrier frequency 
with an amplitude constant in time and attenuating with increasing z. Only a single param- 
eter of the medium is present in the solution, namely ~, which characterizes the attenuation 
of the function V(t, z). In the case of a semiinfinite rod solution (2.2) is substantially 
simplified and the asymptote is determined by the first two terms of formula (2.4). 

3. Numerical Solution. For the numerical solution of Eqs. (i.I) and (1o2) we used 
the explicit "cross" type finite-difference scheme. The parasitic oscillations that arise 
on replacement of the differential equations by difference equations were eliminated by 
minimizing numerical dispersion [9]. 

Let us examine the system of finite-difference equations for the simplified models 
of the medium 
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V ~ + I  r~ n - - 1  ~n - -  21 i-I-  Vi n . 
m ~2 , = A j y j  + G v ~ l -  ~'j 

h. r 

i~ x 2 = a  A i i v~ i+  b ~ A~iv] i+ d 2 h ~ ( R + ( i _ t ) h r )  " 

(3.1) 

(3.2) 

Here T, h r, and h z are the intervals of the difference grid; Aii and Ajj are the second-order 
difference operators with respect to the coordinates r(i) and z(j); m is the mass of the 
node; G = 2pb 2. When a = 0 we obtain the shearing models which when d = i or d = 0 are 
the axisy~etric and plane cases. The finite-difference equations for the exact theory 
of elasticity in A exhibits no fundamental differences from (3.2), but they are more cum- 
bersome in notation and are therefore not presented here. 

By means of standard Fourier analysis we derive the conditions of stability for scheme 
(3.1) 

T ~< h z ] / ' m ( l  + Gh~2/hr 2) -1/2, ( 3 . 3  ) 

for scheme (3.2) 

a b 2 ~ - 1 / 2  
+ hT} (8, c), 

t ~ (A) .  

The optimum parameters of the difference grid, providing for maximum approach of the regions 
relating the system of differential and finite-difference equations are, in the vertical 

direction, 

hz = ~' (3.4) 

and in the radial direction 

{~ (b (1 - -  (aT/hz)Z)l/e) -1 (B, C), 
h r =  ( m a x ( a ,  b ) ( t  --(a#h~)Z)Y2) -1 (A). 

It followsfrom (3.3) that(3.4) is satisfied only when m = i + ~m (~m = Ghz2/hr 2), which 
corresponds to some mass connected to the rod. The existence of such a boundary layer cor- 
responds to the physical essence of the problem; however, its magnitude in the given case 
is not connected to the physical characteristics of the process, but is dictated by the 
requirement of calculation stability. A rough estimate of the magnitude of the boundary 
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layer in the discrete model can be obtained from the conditions under which the rod moves 
together~with the adjacent layer of the medium, having a thickness of hr/2, so that m = 

1 + Sm (Sm = Phr/2)" In calculations of practical problems gm < em" 

In developing the numerical algorithm we find that the infinite region {z ~ 0} x {r 
0} is replaced by the finite region {0 ~ z ~ L} x {0 ~ r ~ R}. The conditions of an absence 
of energy sources at infinity (1.8) can be replaced by the approximate conditions: 

aVar lb avat (r = R), a-7=a~ ai avot (~ = L), ( 3 .5 )  

c o r r e s p o n d i n g  t o  t h e  c o n d i t i o n s  o f  r a d i a t i o n  in  t h e  o n e - d i m e n s i o n a l  c a s e ,  where t h e y  f o l l o w  
d i r e c t l y  ou t  o f  t h e  d ' A l e m b e r t  s o l u t i o n  f o r  a o n e - d i m e n s i o n a l  wave e q u a t i o n .  I n  t h e  A model 
t h e  r a d i a l  d i s p l a c e m e n t  c o n d i t i o n  s h o u l d  be added to  t h i s  e q u a t i o n :  

au ~ au (7-=B), a~ ~ au ( z=L) .  ( 3 .6 )  ar a at az b at 

The question arises as to the extent to which (3.5) and (3.6) are exact. Let us note 
that for the shearing models C the first of the conditions in (3.5) becomes exact, while 
the second condition becomes extraneous, since there is no relationship between the horizon- 
tal layers of the medium (Sv/Sz = 0). Here, in the finite-difference algorithm there is 
no need to shift the boundary of the discrete region through any great distance (such that 
the wave reflected during the computation time does not reach the observation point). It 
is enough to take L = ~, and in the radial direction to limit ourselves to several nodes 
of the grid. In B and B' conditions (3.5) become approximate and lead to the appearance 
of particular reflections from fictitious boundaries. However, as is shown by the calcula- 
tions carried out over a broad range of parameters for the models B and B', the influence 
of these fictitious boundaries on the quantitative characteristics of the process is insig- 
nificant. However, the qualitative pattern of the oscillations does not change. Thus, 
with doubling (L = 2~) the numerical results change by no more than 1-2%. The distancing 
of the side boundary R from 5h r to 30h r yields an error of less than 5%. Considerably less 
exact are (3.5) and (3.6) in the A model. Here the regional boundary has to be shifted 
through a distance such that the wave reflected during the calculation time does not reach 
the observation point. 

While the upper face of the rod is acted upon by the sinusoidal lobe Q(t) = H0(t) • 
sin (2~t/X) the calculations are carried out until the process is stabilized with respect 
to time. 

4. Comparison of the Models on the Basis of Calculation Results. The calculations 
have shown that the qualitative pattern of the oscillations is identical for all of the 
models. We will therefore limit ourselves to an examination of the C I model. Curves 1 
in Fig. 2 represent oscillograms of the displacements at three points in the rod: near 
the surface of the half space (z = h z = I), in the middle of the rod (z = ~/2), and near 
the lower face (z = ~ - hz). To the right we see the velocity oscillograms~ We can see 
that the closer the observation point to the bottom surface, the less energy the reflected 
wave carries to that surface, since in the propagation process a portion of the energy is 
scattered to the ambient medium. If the direct and reflected waves participate at point 
z = ~ - h z in the formation of amplitude, and if their contributions are approximately equal, 
then at the point z = ~/2 on arrival of the reflected wave at the instant t = 3~/2 the ampli- 
tudes change only slightly (curve 2 describes the nonsteadiness contribution only for the 
direct wave). Let us note that the displacement calculated on the basis of the asymptote 
(2.4) coincides virtually with I, the maximum difference in this computational example not 
exceeding 2%. 

The results of the comparative analysis of the wave-process characteristics are shown 

in Table 1 (V m = max]V(t, l)b V m= maxIV(t , l)b b=0.1, a= 0.2, p = 0.25, I-~60, ! representing 
t 

the axisymmetric problem, while II represents the plane problem). Here we find the peak 
values of the displacements and velocities in the section z = ~, where we observe the great- 
est quantitative differences between the models. The relative errors are shown alongside: 

Ivm-   c, A, 
V m -- V m = ,  , - - r e - -  . oo , .1oo , 
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TABLE i 

U2 
V m 1/3 

l/6 

�9 1 / 2  

V m l/3 
l/6 

2,97 
2,29 
1,t7 

0,39 
0,48 
0,38 

iW' 
1,6 
2,6 
9,3 

4,2 
5,2 
7,3 

C Sl~ll. 
% 

2,92 28,8 
2,23 20,9 
1,29 8,6 

0,37 18 
0,45 10,4 
0,35 8,9 

A' 

4,06 
2,82 
1,56 

0,44 
0,46 
0,45 

II 
I 

eA',B',C'" B' leB',C', % 
% I 
1,2 4,10 1,2 
4,6 2,76 2,5 
2,5 1,28 3,i 

2,7 0,45 4,4 
10,4 0,45 7,3 
22,7 0,35 1,7 

c' I (2.0 

4,09:4,05 
2,72 2,69 
i,24 1,26 

0,43 [ 0,43 
0,42 0,42 
0,35 0,35 

El,If represents the comparison among all proposed models, including that of asymptotic 
formula (2.4). These data correspond to calculations for three values of the wavelength 

= s Z/3, s As was demonstrated in the dispersion analysis, the main differences 
between the plane and axisymmetric models are observed in the longwave region. On the other 
hand, the longer the wave, the closer the simplified models B and C to the exact elasticity 
theory for A. The differences among the models with a single displacement (B) and the pure- 
ly shearing models (C) are insignificant over the entire range of oscillations. The differ- 
ence in (2.4) from the numerical solution for the model C' does not exceed 3%: 

Thus, the transition from A to B and C is entirely justified. In studying the quali- 
tative behavior of the wave in the rod, we can use any of the models being discussed here. 
Having interpreted the numerical result in the longwave region, we have to distinguish bet- 
ween the plane and axisymmetric formulations. In the following, when studying the effect 
of geometric and physical parameters of the system on the wave process, we will take the 
B model as our basis. 

5. Analysis of the Results. We can divide all of the wave-process parameters into 
three groups: a, b, and p are the relative physical parameters of the medium being investi- 
gated; s is the geometric parameter; and % is the wavelength of the forces oscillations. 

Let us initially examine the effect of the medium's parameters. As we can see from 
a comparative analysis of the models, the velocity of the expansion wave exerts virtually 
no influence on the wave pattern. Thus, with a change in a from 0 to 2b the maximum dif- 
ference in oscillation amplitudes for the velocity amounts to 7% over the entire range of 
oscillations. It is natural that with an increase in e to magnitudes on the order of 6-10b 
the influence of this parameter becomes noticeable, but in the majority of actual media 
(for example, in soils, in rocks) no such velocity relationship is realized. Thus, the 
process of wave propagation through the rod depends only weakly on the velocity of the longi- 
tudinal wave in the ambient medium. If we are to speak of a solution of the inverse problem 
(i.e., finding the parameters of the medium from an analysis of the wave pattern in the 
rod), then the definition of elis problematical. 

In the derived analytical solution of (2.2) and its asymptote (2.4) there exist two 
parameters, namely: m is the frequency of the excited load and T = pb (p is the relative 
density of the medium, b is the relative velocity at which the shearing wave is propagated). 
It is natural to assume that with a fixed frequency it is precisely T that will exert the 
most noticeable influence on the wave process. The numerical calculations conducted over 
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Fig. 4 Fig, 5 

a 

x 

z~E 

oV 

o 

Model 
l/6 e, % U3 ~, % l/2 s,% 

B 
C 
A' 
B' 
C' 

0.026i6 
0,02670 
0,02143 
0,02457 
0,02507 

4,64 
6,8 

14,3 
1,72 
0,28 

0,02797 
0,02855 
0,02452 
0,0262 
0,02499 

i t  ,,q 
t4,2 
1,92 
i,52 
0,04 

0,03060 
0,03i06 
0,02520 
0,02468 
0,02487 

22,4 
24,2 
0,8 
i,28 
0,52 

a broad range of parameters completely confirmed this assumption. Figure 3 shows diagrams 
of the peak absolutely values of the displacements, stresses, and of the energy in sections 
of the rod as functions of the coordinate z. These curves correspond to various values 
of the medium's density p (i: 0.2; 2: 0.4; 3: 0.6)~ Figure 3 and all the subsequent fig- 
ures (unless otherwise stipulated) all of the parameters are fixed: ~ = 60, ~ = L/4, p = 
0.25, b = 0.i, a = 0.2. We see that with an increase in density the attenuation of the 
wave characteristics increases. The wavelike nature of these curves is associated with 
the phase difference between the combining direct and reflected waves. 

Let us introduce the functional H(f, B), characterizing the attenuation of some wave 
function f(z) on passage of the wave through the rod from the upper face to the lower face, 
for a given value of some parameter B: 

Hff, ~) = max ]1(0)l/maxt](t)[. 

Fo r  d i s p l a c e m e n t  and s t r e s s  t y p e  f u n c t i o n s  d i m i n i s h i n g  n o n m o n o t o n i c a l l y ,  we t a k e  t h e  a v e r a g e d  
q u a n t i t y .  F i g u r e  4 shows t h e  g r a p h s  o f  t h e  a t t e n u a t i o n  o f  d i s p l a c e m e n t  and s t r e s s ,  as  w e l l  
as  o f  e n e r g y ,  as  f u n c t i o n s  o f  t h e  v a r i o u s  p a r a m e t e r s  o f  t h e  p r o b ] e m .  With i n c r e a s i n g  
(corresponidngly, with increasing p and b) the function H increases monotonically for all 
basic amplitudes and energy characteristics of the wave process in the rod. 

Figure 5a illustrates the function H(', i). The wavelength varies from ~/6 to 2~. 
As was to be expected, H(', %) increases with a rise in %. The longer waves provide for 
better radiation into the medium, and all of the wave characteristics are rapidly attenuated. 
Nevertheless, owing to the presence of partial resonance the function H(', X) for certain 
wavelengths is not one increasing monotonically. Figure 5b, where the values of H(', X) 
are shown for % = 9, i0, ii, 12, we see that at the resonance wavelength (2~/~ e Z) the at- 
tenuation is weaker. 

The monotonic nature of attenuation in the amplitudes of the basic characteristics 
for the wave process allows us to make the transition to an examination of the inverse problem 
of determining the parameters of the ambient medium on the basis of the known wave pattern 
in the rod. The density p of the medium or the velocity b of the shearing wave may be the 
unknowns. 
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Thus, let the value of the functional H(f, ~) be given for some characteristic of the 
wave process f(z). We have to find the unknown parameter B of the medium. For the solution 
of the inverse problem we have utilized (2.4): 

H(V, ?) = max IV ac (0)]/max IV ac (/)1 = h0, (5 .  i) 
t t 

h0 i s  o b t a i n e d  f rom n u m e r i c a l  s o l u t i o n  o f  t h e  d i r e c t  p rob lem f o r  v a r i o u s  s i m p l i f i e d  mode l s ;  
i s  f i x e d  i n  a manner such  as  t o  s a t i s f y  a l l  l i m i t a t i o n s  imposed in  t h e  i n t r o d u c t i o n  o f  

t h e  o n e - d i m e n s i o n a l  model  o f  t h e  rod  and o f  t h e  s i m p l i f i e d  models  o f  t h e  medium. The param- 
e t e r  7 i s  d e f i n e d  f rom ( 5 . 1 ) .  I n  t h e  n u m e r i c a l  e x p e r i m e n t  t h a t  we have  c a r r i e d  ou t  7 = 
0 .025 .  Tab le  2 shows t h e  v a l u e s  o f  ~ found  f rom ( 5 . 1 )  in  t h e  s o l u t i o n  o f  t h e  i n v e r s e  p rob lem 
f o r  v a r i o u s  X and t h e  r e l a t i v e  e r r o r  in  c o m p a r i s o n  t o  t h e  t r u e  v a l u e s  o f  7 (s = 60, a = 2b) .  

In  c o n c l u s i o n  l e t  us  f o r m u l a t e  t h e  main r e s u l t s .  1. The t r a n s i t i o n  f rom t h e  t h e o r y  
o f  e l a s t i c i t y  t o  t h e  s i m p l i f i e d  models  o f  t h e  medium has  been v a l i d a t e d  in  t h e  d e s c r i p t i o n  
o f  n o n s t e a d y  o s c i l l a t i o n s  o f  an e l a s t i c  rod  in  a h a l f  s p a c e .  2. We have  a n a l y z e d  t h e  e f f e c t  
o f  t h e  p r o p e r t i e s  o f  t h e  medium on t h e  n a t u r e  o f  t h e  wave p a t t e r n  in  t h e  rod  and we have  
d e m o n s t r a t e d  t h a t  t h e  f u n d a m e n t a l  p a r a m e t e r s  r e s p o n s i b l e  f o r  t h e  a t t e n u a t i o n  o f  t h e  o s c i l l a -  
t i o n s  a r e  t h e  f r e q u e n c y  o f  t h e  e x c i t e d  l o a d ,  t h e  d e n s i t y ,  and t h e  s h e a r i n g  r i g i d i t y  o f  t h e  
medium. The i n f l u e n c e  o f  v o l u m e t r i c  r i g i d i t y  i s  i n c o n s e q u e n t i a l .  3. I n  p r a c t i c a l  c a l c u l a -  
t i o n s ,  in  t h e  c o n s t r u c t i o n  o f  s o l u t i o n s ,  i t  i s  p o s s i b l e  t o  use  a p p r o x i m a t e  a n a l y t i c a l  e s t i -  
m a t e s ,  such  as t h o s e  d e r i v e d  f o r  t h e  s h e a r i n g  model  o f  t h e  medium. 

The a u t h o r  e x p r e s s e s  h i s  g r a t i t u d e  t o  Kh. B. Tkach f o r  h i s  f o r m u l a t i o n  o f  t h e  p rob lem 
and t o  M. V. S t epanenko  f o r  h i s  a t t e n t i o n  t o  t h i s  s t u d y  and f o r  h i s  u s e f u l  d i s c u s s i o n .  
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